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ABSTRACT

We present an expression for the non-linear evolution of the cosmological power spectrum

based on Lagrangian trajectories. This is simplified using the Zel'dovich approximation to

trace particle displacements, assuming Gaussian initial conditions. The model is found to

exhibit the transfer of power from large to small scales expected in self-gravitating fields.

Some exact solutions are found for power-law initial spectra.

We have extended this analysis into redshift space and found a solution for the non-linear,

anisotropic redshift-space power spectrum in the limit of plane-parallel redshifl distortions.

The quadrupole-to-monopole ratio is calculated for the case of power-law initial spectra. We

find that the shape of this ratio depends on the shape of the initial spectrum, but when scaled to

linear theory depends only weakly on the redshift-space distortion parameter, 8. The point of

zero-crossing of the quadrupole, k o, is found to obey a simple scaling relation and we calculate

this scale in the Zel'dovich approximation.

This model is found to be in good agreement with a series of N-body simulations on scales

down to the zero-crossing of the quadrupole, although the wavenumber at zero-crossing is

underestimated. These results are applied to the quadrupole:to-monopole ratio found in the

merged QDOT plus 1.2-Jy-IRA5 redshift survey. Using a likelihood technique we have

estimated that the distortion parameter is constrained to be/_ > 0.5 at the 95 per cent level. Our

results are fairly insensitive to the local primordial spectral slope, but the likelihood analysis

suggests n--2 in the translinear regime. The zero-crossing scale of the quadrupole is

k0 =0.5e0.1hMpc -l and from this we infer that the amplitude of clustering is

os = 0.7 ± 0.05.

We suggest that the success of this model is due to non-linear redshift-space effects arising

from infall on to caustics and is not dominated by virialized cluster cores. The latter should

start to dominate on scales below the zero-crossing of the quadrupole, where our model breaks

down.

Key words: cosmology: theory - large-scale structure of Universe.

1 INTRODUCTION

The Newtonian analysis of linear growth of perturbations in an

expanding universe is a well-understood problem (Peebles 1980;

Efstathiou 1990). The extension of this into the non-linear regime
has proven more difficult, owing to the strong mode coupling that

arises in gravitational collapse, and most progress has been made

through the use of N-body simulations.
Actual observations of galaxies in redshift space are further

complicated (and made more interesting) by redshift distortions,

caused by peculiar velocities of galaxies along the line of sight. Again.
the linear problem is relatively well understood. Kaiser (1987) has

shown that linear techhLft distortions take their simplest form when
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expressed in Fourier space, at least if structure is far from the observer

so that the distortions are essentially plane-parallel. Here the redskift-

space Fourier modes ate related to the real-space ones by

6'(k)= (I+ ,_)8(k) O)

where a superscript s denotes s redshift-space quantity, _, is the

cosine of the angle between the wavevector k and the line of sight,

and 8, the redshift distortion parameter, is the dimensionless growth
rate of growing modes in linear theory, which is related to the

cosmological density fl by (Peebles 1980)

flo.6

_'T (2_

in the standard pressureless Friedmann cosmology with mass-

to-light bias b. It is through measuring the distortion parameter
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that one hopes to measure the cosmological density, parameter,
ft.

Kaiser's formula (1) is valid only in the linea; limit, and for

plane-parallel distortions, neither of,,_ hich approximations is well

satisfied in reality. Several authors have nov," addressed the problem

of generalizing Kaiser's formula to the case of radial distortions,

while retaining the assumption of linearity (Fisher, Scharf & Lahav

1994; Heavens & Taylor 1995; Fisher et al. 1995; Zaroubi &

Hoffman 1996; Ballinger, Heavens & Taylor 1995; Hamilton &

Culhane 1996).

The main purpose of the present paper is to extend the analysis of
redshift distortions into the non-linear regime, retaining the plane-

parallel approximation for simplicity. Our approach to the problem

is motivated by the consideration that the density in redshift space

may appear highly non-linear even when the densiLv in real space is

only mildly non-linear. For example, a region that in real space is

just turning around, a mildly non-linear condition, appears in

redshift space as a caustic, a surface of infinite density, which is

thoroughly non-linear. This leads us first to work in Lagrangian

space (Section 2.1), and secondly to adopt the Zel'dovich (1970)

approximation (Sections 2.2 and 3). The Zel'dovich approximation

is in effect linear theory expressed in Lagrangian space, inasmuch

as it approximates the trajectories of particles as straight lines with

(comoving) displacements grov,ing according to linear theory.
Our approach follows that of Taylor (1993), who studied the non-

linear evolution of the power spectrum. Comparable approaches

have been used by Bond & Couchman (1987) to evolve the galaxy
angular correlation function, by Mann. Heavens & Peacock (1993)

to evolve the real-space correlation function of clusters, and by

Schneider & Bartelmann (1995) to evolve the real-space

(unredshifted) power spectrum. Our approach differs from that of

Hivon et al. (1995), who applied a perturbation expansion in

Lagrangian space to second order to calculate the redshifi-space
skewness.

For simplicity, we assume throughout this paper that the density

field is unbiased, b = 1. Generally, the effect of evolution, if

continuity is assumed (which is a fundamental assumption of this

paper), is to tend to drive the bias factor towards unity'. Continuity

implies that the ratio of galaxy to matter density (I +/_)/(1 + 8Mr

remains constant in Lagrangian elements, and if (somehow) a linear

bias 8 =. b8 M is established at some early time when/$ and/$u are

both small, then the ratio of galaxy to matter density must be close

to unity, (1 + b6M)/(1 +/_M)" 1. it follows that the bias will be

close to unity at later, non-linear epochs when/5 Mis no longer small.

Conversely, if bias is in fact important at the present, non-linear

epoch (as may well be the case), then it must be that the assumption

of continuity must break down in the not too distant past. Indeed, it

may be that continuity is violated on an ongoing basis. In the pre£ent

paper we choose to ignore this thorny problem, and simply assume

an u.nbiased density field.

We begin in Section 2 by deriving equations which relate the

Lagrangian and Eulerian descriptions of density, and we calculate a

general expression for the evolution of the power spectrum. We

invoke the Zel'dovich approximation and Gaussian initial condi-

tions and consider some of the general features of the resulting non-

linear power spectrum. Some exact solutions for initially power-

law spectra are derfved. In Section 3 we calculate the power

spectrum in redshift space, again in the Zerdovich approximation,

and obtain a number of analytic and numerical results for the

observationally interesting ratio of quadrupole-to-monopole

power. In Section 4, we compare the predictions of the Zel'dovich

approximation with N-body simulations, and we apply our findings

to analyse the quadrupole distortion measured in the QDOT plus

1.2-Jy redshift survey. We summarize our conclusions in Section 5.

2 REAL-SPACE POWER SPECTRA

2.1 Clustering in the Lagrangian frame

In the Lagrangian theory of fluid mechanics, the central variable is

the displacement vector field, rather than the density field of

Eulerian space. This displacement field, _¢q.r), maps particles

from their initial Lagrangian coordinate, q, to the Eulerian-space
coordinate, x. via the relation t

x(q, t) = q + _¢(q. t) (3)

where _(q. t) is the integral of the velocity field along the world-line

of the particle:

I'_(q, t) = dr' v[x_q, t'), t'] . (4)

The advantage of the Lagrangian formalism for gravitational

collapse was first pointed out in the seminal work by Zel'dovich

(1970). Because the coordinate system of Lagrangian space is non.

linear, moving with the particles themselves, this approach takes

the analysis of perturbation growth of the density field into the non-

linear regime while conserving mass density.

However, the most useful observable quantity in cosmology is
the Eulerian density field, pex), inferred either from varialions in the

galaxy distribution, or indirectly from distortions in the Hubble

flow, from gravitational lensing, or from the microwave back-

ground. Continuity, along with the assumption of uniform initial

density, implies that the relation between the overdensity

8(x) • [#(x) - _]/,b in Eulerian space and the Lagrangian displace-
ment field J[(q) is

= Id3q/SD[X - q -- _(q)] - 1, (5)
/_(x)

where 6D(X) is the Dirac delta function. The Fourier transform

/_(k) = [ d_x e _ "*6(x) (6)

of the overdensity b(x), equation (5), is

= Jd3qe_"(e _'_ - 1), (7)_(k)

which relates the Fourier space Eulerian density field 6(k) to the

Lagrangian displacement field _(q).

The correlation function of Fourier modes defines the power
spectrum P(k):

(_k)_*(k')) = (2_)_P(k)b_(k - k') , (8)

where the angular brackets denote ensemble averaging and the
Dirac delta function arises from translational invariance. Trans-

forming to differential and centre-of-mass coordinates, we find that

as a result of translational invariance only the differential terms

survive. We can then express the power spectrum by the integral

equation

P(k) = d'_qea q((ei__) - I), (9)

where theterm (ea'a'_)isidentifiedasthegeneratingfunctionofthe

differentialdisplacementvectorfield,A_(q),ofpointsseparatedby

z Throughoul Ibis paper we lake the coordinates x and q to be comoving
coordinates, defined relative to the general Hubble expansion of the
Universe.
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distance q --- qJ - q::

_.(q) = ((q_) - li_q:) • (10)

Equation (9) for the power spectrum is valid at all times, not merely
in the linear regime. However, in order to solve this completely one

needs to have an expression for the displacement generating

function and its evolution. In practice we shall have to approximate

this. In the next section we use equation (9) to calculate the

evolution of the power spectrum in the Zel'dovich approximation,

under the assumption of random Gaussian initial conditions.

2.2 Evolution of the power spectrum in the Zel'dovtch

approximation

A careful analysis of the Zel'dovich approximation has been given

by Hut & Bertschinger (1995), who consider it in the context of

local theories of gravity. For our purposes we only need the result

that the particle displacement field scales according to linear theory:

_[(q, t) --- D(r)lic (q)

iD(t) _ k
--- _ [d'k --_6L(k)e- "q, (11)

where _L(q) is the linear displacement field, and ,SL(k) the linear

density field, defined at some suitably early time. This approxima-

tion is then a first-order theory in the displacement vector field,

extrapolated to arbitrary later times. By construction the Lagran-

gian coordinate system preserves mass, but in the Zel'dovich

approximation at the expense of not satisfying the Euler equation.

In the Lagrangian frame the density field is usually evolved along

fluid streamlines, 8[qfx). t], but equation (5) allows one to calculate
the density in Eulerian coordinates.

The assumption ofa Gaussian initial fluctuation field implies that
the initial displacement field, _L, was Gaussian. The Zel'dovich

approximation (11)further implies that the displacement field _(q)

remains Gaussian for all time. Equation (9) for the power spectrum
involves the Lagrangian generating function of the differential

displacement field, which for a Gaussian vector field is

(e_'a_) = exp(-k, kfl/t_,A_y2)
,"

= exp(-kikj[d/ii(O) - _,j(q)]). (12)

where ¢'0(q)" (_i(qi)_j(q_,)) is the displacement correlation func-

tion. In the Zel'dovich approximation, the displacement Correlation

function ¢_,igrows as the square of the growth factor D(t) in the non-
linear as well as linear regimes:

¢#(q, t) = [D(t)]' ¢_j(q) . (13)

Thc linear correlation function exaj(q) of displacements is related to

the linear power spectrum PL(k) by

-_ PL (k)e- "q, (14)

which at zero separation, q = O, is

, 80 [d3kk-'-Pg(k),¢,4o) = (_-)8+j= (15)
flu

where (_'-)istheone-dimensionaldispersionof displacements.

InsertingtheGaussiangeneratingfunction(12)intoequation(9)

forthepower spectrum yields(Taylor1993)

fd3qea'+ie -+'*:'_:,-¢'(+)1 - l}.. (16)P(k)
J
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This equation (16), along with equations (13) and (14). provides a

non-linear mapping between the initial and evolved power spectra,

where the degree of evolution is controlled by the linear amplitude,

b't), of perturbations.

The unit term on the right of the integrand of equation (16). which

arises from subtraction of the mean density, yields a delta function

at k = 0 on integration. The unit term can be ignored for k * 0, and

we tacitly drop it hereafter. Nevertheless, it can help in numerical

integrations to retain the unit term when k is small (linear regime).

So far we have not assumed that the density field is isotropic,

although we have assumed that it is homogeneous. In Section 3 we.

will apply the power spectrum equation (16) in redshift space,

where the density field is not isotropic. In the remainder of the

present section we assume that the density field is unredshifted and

isotropic.

For an isotropic density field, the displacement correlation

function ¢,,./(q) resolves into irreducible components parallel and

perpendicular to the pair separation q:

¢,j(q) = ¢:_(qkT,,"b + Ca.(q)(8 O - il,?t:), (17)

where

¢,:q)=_J_,p,(,)[jo(,q)_,j,,kq,] "W-qJ (is)
and

¢_ (q, = _ [ dk PL(+) fj' (_)] (19)
._r- J L kq j"

For a general potential flow, as here, the parallel variance ¢.:_is

related to the perpendicular variance ¢.t by (Monin & Yaglom

1975; Gorski 1988)

_,:;(q) = dq_-(q)
dq ' (20)

which can also be derived from equation (14) with the definitions

(17). It is convenient to define the differential displacement covar-
lances _+ and __ by

¢ + (q) . _ .(0)- ¢., (q), (21)

¢-(q)" _;(q) - ¢:(q), (22)

which are related by

¢_(q) = qd¢+fq)
dq (23)

The (isotropic) power spectrum (16) can then be written in terms of

_+ and __:

P(k) = ] d_qe u_"-*:(_'+_-":}. (24)

where # = _. #,Integratingequation(24)overtheazimuthalangle

ofq aboutthewavevectork istrivial,and furtherintegrationover

yields

= _e _oo2_tq_dqe-*:t¢''+_"_[(kq.k"__ ), (25)P(k)

where F(A, B) is the function

'_rtt:"" )eft(B,. _( A" 2_.i_)iA (26)F_.4, B) - _ exp \B -

with eft(.-) the error function (Abramowitz & Stegun 1965)

2 f:: _:
erf(2) jodte . (27)

The error function eft(z) for complex z is available in programs
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...... I

k

the dimensionless amplitudeFigure 1. The evolution of
AL(k)= k_exlX-k:12) in the Zel'dovich approximation for random
Gaussian initial conditions. The solid lines represent the non-linear power

spectrum and the dolled lines represent the linear initial spectrum.

such as WA'rHE._t',TIC,',(Wolfram Research). Equation (25) reduces

the evaluation of the power spectrum to a single integral over

separation q. Excepting some simple cases (Section 2.4), this

integral must be done numerically•

The integrand in equation (25) oscillates rapidly when kq is large

and real, which can make the integral difficult to evaluate (Schnei-

der & Bartelmann 1995). One way to resolve the difficulty is to

continue the ff,(q) analytically into the complex plane, and to shift

the path of integration over q into the upper complex plane, which
converts the oscillations into exponential decay. Some experimen-

tation may be required to determine a good integration path, along

which the integrand is well-behaved. For example, in the case of an

initially Gaussian power spectrum, Section 2.3 below; we found it

satisfactory to integrate first along the real axis to q- min(2D, Ilk),

and then to complete the integration along a straight line slanted

upwards in the complex plane, at angle "trl6 from the real line.

Variants on this path, with or without the initial segment along the

real axis, and with other slant angles, worked in other cases.

2.3 Example: a Gaussian power spectrum

Asan example, in Fig. I we show the Zel'dovich evolution of a

power spectrum that is initially Gaussian,

• pL(k ) == 2,n 2 exp(_k2). (28)

The quantity plotted is the dimensionless amplitude A(k), the

square root of the dimensionless power spectrum defined by (Pea-

cock 1992)

.. t3e(k)
A,_(k)• _. (29)

Fig. 1 shows clearly the two main features of non-linear growth, the

amplification of small-scale power from the formation of caustics,

and the restriction on the growth of intermediate-scale power

imposed by the positive density constraint in voids.

Fig. I also illustrates the limitations of the Zel'dovich approx-

imation at later stages. While in reality the small-scale density
contrast increases following the collapse of structures, in the

Zel'dovich approximation structures expand back outwards after

collapse. Thus in Fig. 1 the amplitude A(k) reaches a maximum of
order unity as a function of time, and thereafter declines. In reality,

the amplitude A(k) would be expected to increase monotonically

with time.

2.4 Solutions for initial power-law spectra

For initially power-law spectra, PL(k) " k _, convergent results are

attained in the Zel'dovich approximation for power spectrum

indices in the range -3 < n <-1. For n .,:-3, the differential

acceleration between particle pairs, hence the differential displace-

ment field, receives divergent contributions from large scales,

while, for n _.-1, the acceleration diverges on small scales. In

the latter case, non-linear processes are expected to intervene so as

to truncate the divergence, but we do not consider such truncations

here.

For initially power-law spectra the differential displacement

covariances are power laws: _,, _ q-,-l. It is convenient here to

normalize the growth factor, D(t), so that

_+(q) = D "-q-,-I (30)

(a normalization based, for example, on the power spectrum is less
convenient because it leads to divergence in the displacement

covarianc¢ for n = -3 and -1). The relation (23) implies

ff_(q) = (-n-1)ff+(q) • (31)

With the normalization (30), the initial linear power spectrum Pt.(k)

is [note that Pt(k) is defined without the factor D 2, so

P(k) = DzPL(k) in the linear regime]

PL(k) = 4=(2 - n) sin[(-n - 1)'n/2]r(1 - n)k" (32)

which is positive over the interval -3 < n • - 1, going through zero
at n = -3 and -1.

In the Zel'dovich approximation, initially power-law power

spectra evolve in a self-similar fashion:

ZxZ(k,D) = AZ(D:k,,+3). (33)

The self-similar evolution of scale-free initial conditions in the case

of a fiat, f/= 1, universe is familiar from the BBGKY hierarchy

(Peebles 19g0). In the Zel'dovich approximation, the property of

self.similarity extends also to non.critical universes.

We now give exact solutions for the cases n = - 1, -2, and -3 in

the Zel'dovich approximation.

2.4.1 n = -1

In the limiting case n -,' -1, the displacement field has an inco-

herent Oaussian nature. This arises because the incipient diver-

gence of acceleration on small scales causes particles at finite

separations to acquire essentially random velocities relative to
each other. However, if particles in an initially uniform field

move about randomly, the resulting field continues to remain

uniform. Therefore the power spectrum should remain infinitesimal'

even when the displacement covariance grows to a finite value.

Mathematically, the linear power spectrum (32) goes to zero in the

limit n -* -1.

In reality, non-linear evolution will in this case invalidate the

linear extrapolation of displacements assumed by the Zel'dovich

approximation. Nevertheless, it is interesting to consider n = -1 as

a limiting case. Defining the small positive quantity v by

v" -n- 1 , (3-1)

which tends to zero as n --* -1, one finds that for _k+ = D2q"
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equation (30), the dimensionless power spectrum, ,_-', evolves as
• +

A2Ck, D) = 3PD2k2e-D'*" . (35)

The power spectrum (35) is that of an n = -1 Oaussian field,

modulated by a random Gaussian distribution of displacements
with a one-dimensional one-point dispersion of D.

Although the power spectrum is itself infinitesimal, the ratio

p_2/_0 of quadrupole-to-monopole redshift power, which we shall
consider in more detail later, is well-defined and finite in the limit

n "-* -1.

2.4.2 n = -2

For an initial power-law spectrum of index n = -2, the integral
(24) can be done analytically. Here _÷ = __ = D2q, and the

dimensionless power spectrum evolves as

16D"k I 3_D"k 1A2(k'D) = 'n'(l + 4D4k2) 2 _.1 + 4(1 +_2)t:.'j • (36)

In the linear regime/Q = 16D2ktTt, while in the highly non-linear

regime 4: = (D2k) -3.

2.4.3 n = -3

In the limiting case n----3, differential accelerations between

pairs are dominated by tidal contributions generated on large scales,

inducing motions which appear locally like anisotropic Hubble
flows. The displacement covariances are _,+ = D"q 2, __ = 2_b÷.

The integral (24) can again be done analytically, yielding

e-mt,_)

A2(k,D) = (12_)tnD 3 . (37)

Here the power Spectrum remains a power law, P(k) = k -3, at all

times. As argued by Schneider & Bartelmann (1995), the persis-
tence of the k -3 form results from the dominance of caustics in the

density distribution. The amplitude initially increases, from an

exponentially tiny value, as more regions reach the point of
collapse, but then reaches a maximum, at D" .w-1/18, and subse-

quently declinesas D -3 as regions pass through the point of

collapseand continuestreamingoutward.

We notethatequation(37)alsogivestheasymptoticform of the

evolutionof the power spectrum in theZel'dovichapproximation

on smallscaleswhenever thespectralindexislessthan-3 on small

scales.This istrueforexample in the caseof theGaussian power

spectrum PL(k) = 2sr2e-t"consideredin Section2.3.In thiscase,

rms differentialdisplacementsbetween pairsare proportionalto

theirseparationon smallscales.Define

.2•tim¢--_e-.o q- = _ _ dkk2P.(k). (38)

Then, for large k ('larger than the wavenumbcr at which the spectral

index passes through n = -3),

e-l/(12e2)

_=(k,D) -. _ (39)

which ;isthesame as equation(37),with o inplaceolD.

3 REDSHIFT-SPACE DISTORTIONS

In Section2 we consideredsome of the propertiesof the density

fieldevolvingin theZel'dovichapproximation.Here we turnour

attentionto thepropertiesof such a densityfieldwhen viewed in

© 1996 RAS, MNRA$ 282, 767-778
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redshift space. We assume the Zel'dovich approximation through-

out this section; in Section 5 we will test the validity of the

approximation with N-body simulations.

3.1 Zei'dovich approximation

In redshift space, the observed radial position of a galaxy is given by

its radial velocity, which measures not only the uniform Hubble

flow, but also the peculiar motion of ihe galaxy. Thus the position s

of a galaxy in redshift space appears shifted from its true position x

by its radial peculiar velocity':

s = x + [._. v(x)]._. (40)

In the Zel'dovich approximation, the peculiar velocity t, is related

to the displacement _[ at all times by the linear relation

v[x(q), t] = _(q. t) = _;[(q, t), where 8, equation (2), is the dimen-

sionless linear growth rate. As discussed in the introduction, we

assume an unbiased density field, b = 1. The position s of a galaxy
in redshift space then appears displaced from its initial Lagrangian

position q (this initial position q is the same in both real and redshifi
space):

s = q + _*(q); (41)

this displacement is given by a. redshifi displacement _S(q) which in
the Zel'dovich approximation is

_'(q) = _(q) +/_[.i'. _(q)].i". (42)

Equation (42) shows that the displacement _s of a galaxy in redshift

space is stretched by a factor (1 + B) along the radial direction. The

overdensity 6' in redshift space is then (compare equation 5)

= Jd3q6D[S-- q-- _['(q)] -- 1 . (43)
6'(s)

The radial character of the redshift distortion _(,i" •_ complicates

evaluation of the Fourier transform of the overdensity. However,

matters simplify if the structure being observed is far away from the

observer, so that the distortions are effectively plane-parallel. In the

plane-parallel approximation, the redshifl displacement//* becomes

_'(q) = _(q) + #[_.. _(q)]L (44)

where the line-of-sight direction _ is taken to be fixed. The Fourier

transform of the redshift density, equation (43), is then

= ld3qei't'q(e _'t' - 1). (45)6S(k)

It is convenient to introduce the vector K, which is the wavevector k

stretched by (1 + _6)along the z-axis:

K = k + _!(_. k)L (46)

whose magnitude is

K -----k(l + 2_8/_k2 + _,2/_),,_. (47)

with _t the cosine of the angle between the wavevector and the line

of sight

#, ----z" _ • (48)

In termsof thevectorK, equation(45)can be rewritten

= Jd]qeit'¢(elX'i - 1). (49)
_'(k)

Just as the displacement _' of a galaxy in redshift space is

stretched by a factor (1 +/_) along the line-of-sight axis :_,equation

2 From here on we work in distance units of the velocity, where the Hubble
parameterHo= 1.
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(44), so also is the displacement conelation function _j • (_) in

redshifl space stretched by tl + _1 factors along each z-component

of the tensor:

¢,_.= (_,_+ B',_,)¢_(_: + t_-:/t_• (50)

If the unredshifted displacement field _ is Gaussian (as is true for an

initially Gaussian field evolved in the Zel'dovich approximation,

Section 2.2), then the redshified displacement field _' is also

Gaussian.

The derivation of expression (16) for the evolved power spec-

trum in Section 2.2 did not assume isotropy, and remains valid in

redshift space. Thus the redshift power spectrum P'(k) is given by

equation (16)with the displacement correlation function taken to be
fS.

the redshift-space quantity v'0.

I., q ,P:(k) _: d ei't'qle -l'kfl¢''lh-¢''qq - 1} . (51)

As in equation (16), the unit term in the integrand can be dropped

for k s_ 0, although again it helps in numerical integrations to retain

the term when k is small. Symmetry about the line of sight z implies

that the redshift power P'(k. _t) is a function of the magnitude k of
the wavevector k and of the cosine t_k of the angle between the

wavevector and the line of sight.

The relation (50) be_'een the redshifted and unredshifted dis-

placement correlation functions _.i and ¢,_j allows the combination

kik?k_ in the integrand of equation (51) to be written conveniently in
terms of the vector K, equation (46), as kik_k_ = K, Kj¢, O. Then

equation (51) for the redshift power spectrum becomes

,il_(k) = [d3qeik'q-K'_IC'.+¢r-_''p, (52)
J

where now t_=/_ "#, and ¢,(q) are the (unredshifted)quantities

givenby equations(2I)and (22).Equation(52)istheredshift-space

counterpartof equation (24).Integratingequation (52)over the

azimuthalangleofq aboutthevectorK yieldsa BesselfunctionJ0:

P'(k) -- I 2_rq_lqd, eit_'-x:'c" +'-'2'Jo(kqs ¢l - ") .
(53)

where s and c are

Ot_t (1 --_,)tn (54)

(1 + 2a_,2 + t_:_,,:):" '

1 + _,_ (55)
c = (1 - s2)ta = (1 + 2_ + _:_,i) ta

Except for the interesting case s -- 0, pursued further in Section

3.4, equation (53) cannot be reduced further to any simple analytic

form. Moreover, the oscillatory character of the integrand makes it

difficult to evaluate numerically. Further details on the evaluation

of the integral (53) are given in Appendix A. In Section 3.5 we adopt

a different approach to evaluating the redshift power spectrum,

which is to smooth it.

3.2 Redsbift power spectra for Initial power laws

We now give analytic solutions for the evolution of the redshift

power spectrum in the Zel'dovich approximation for initially

power-law spectraPC _' k', for the casesn = -1 and n = -3.
In Section 2.4 we saw that the n = -1 spectrum gave rise to an

incoherent random Gaussian velocity dispersion, resulting in a

simple damping term for the non-linear power in the Zel'dovich

approximation. Extending this to the redshift domain, we can see

that the effect will be an additional damping term in the line-of-

sight direction - an approximation previously suggested by

Peacock (1992) to model the effects of virialized clusters. With

the normalization discussed in Section 2.4, we find that the redshift

power spectrum is

_2(k,D ) = 3_,D2k-'(1 +/_)2e-t_K:. (56)

This is the same as the Peacock smoothing with a_ = D:(2# + B"),

where o,, is the one-dimensional one-point velocity dispersion.

Notice that we also recover the linear Kaiser boost factor,

(1 + Bp_-) 2. Hence we conclude that this form has some justification

beyond its phenomenological foundations for scales where the

spectral index is -- 1, and arises as a special case in the model

presented here.
For n = -2, there appears to be no analytic solution for the

redshift power spectrum, unlike the unredshifted case, equation

(36).
In the case n --. -3, we find the analytic solution

1

Aa(k'D) = (12-n)t_D_(l + 2_tz_ + _2t_)s'z

2 " '_ _"

(57)
,_exp - a_-'<1 +2¢u_+t_-u_)" J"

which is the redshift counterpart of the unredshifled solution (37).

3.3 Multipole analysis of the redshift power spectrum

The effect of redshift distortion on the statistical properties of the

density field can be best interpreted by a muhipole expansion of the

redshifted power spectrum. The anisotropic spectrum can be

expanded in l.xgendre polynomials:

l_(k) = _ P_t(kYPt(_t),
(58)

¢.0

where _(t_,) isthe (thLegendre polynomial and t_tisagainthe

cosineof theanglebetween thewavevectork and thelineofsight.

The multipolemoments of thepower aregivenby

2¢ + 1 it
/:¢(k) -- _ j__ dtq, P_(k)_¢(_t_,). (59)

Hamilton (1992) suggested using the ratios of the multipoles as a

way of measuring #, expanding the correlation function from
Kaiser's linear theory.Cole, Fisher & Weinberg (1994) developed

this to study the anisotropy of the power spectrum, where non-linear

effects could be avoided by limiting the analysis to small wave-

numbers. The distortion parameter, B, could then be estimated from
the ratio of monopole and quadrupole power:

= (60)

In the linear regime each observable mode contributes to an

independent estimate of _.
Non-linear effects modify the quadrupole-to-monopole ratio

from the linear value (60). In the following section we derive an

approximate expression for this ratio in the Zel'dovich approxima"

tion, and in subsequent sections we present numerical results for the

ratio in the Zel'dovich approximation, in N-body simulations, and

in observations.

3.4 An approximation to the quadrupole.to-monopole ratio

In this section we derive an approximation, equation (64), which
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relates the ratio P_/_ of the quadrupolc and monopole redshift

power spectra to the evolution of the unrcdshifted power spectrum
in the Zel'dovich approximation.

In eqaation (53) for the redshift power spectrum, notice that the

Bessel functionJofkqs_) in the integrand equals one when-

ever s is zero, which happens in the limit B "-" 0 (equation 54) and

also in the case/_k = 0 or I where the wavevector is perpendicular
or parallel to the line of sight. Moreover in the non-linear limit

where k -..- "-, the K: terms in the exponential cause the integrand of

equation (53) to decay rapidly as q increases and again the Bessel

function is sensibly equal to one (as is also the factor e i'_')

wherever the integrand is non-negligible. In all these cases, the

red.shifted power, equation (53), reduces to the same form as its

unredshifted counterpart, equation (24), but with _,, in the latter

replaced by (KIk)"¢_,, where K/k = 1 + B,_ (equation 47) given
that s -- 0 and c = 1 (equation 55). In other words, the redshifted

power equals the unredshifted power evolved forward by I + B_
in thegrowth factorD(t):

PS(k.D) - P[k.(l + B_2,)D]. (61)

As it happens, this same equation (61) is also valid in the linear

regime, according to the usual linear relations P_k,D) = D'-,PL(k )

and P_(k,D)= (1 +Bu_)2P(k.D). Thus approximation (61) is

valid (i) in the limit fl -. 0, or (ii) if u, = 0, i.e. if the wavevector

k is perpendicular to the line of sight, or (iii) if u, = 1, i.e. if the

wavevector k is parallel to the line of sight, or (iv) in the highly non-

linear regime, or (v) in the linear regime. Evidently the approxima-
tion is of some generality.

Let us consider more closely the limiting case B -" 0, for which

the approximation (61) becomes exact (within the context of the

Zei'dovich approximation). Expanding equation (61) as a Taylor
reties for small _ gives

P'(k.D) = P(k,D) + B#2,D8P(k.D)
dD (/_-_ O) • (62)

Here theredshiftpower spectrum isthesum of a constanttermand a

term proportionalto #L which impliesthatthe redshiftpower

spectrum isa sum of monopole and quadrupoleterms,forsmall/3.

The ratioof quadrupoleand monopole powers forsmallB is,from

equation(62),

l_2(k) 4B alnP(k,D)

= 3 aIn(D-') (B -"-0). (63)

Amongst otherthings,equation (63)predictsthatthe quadrupole

redshiftedpower _(k) goes throughzero where the unredshifted

power P[k,D(t)]reachesitsmaximum as a functionof timein the

Zzl'dovichapproximation.

We now proposea generalizationof theresult(63)toarbitraryB,

which isconsistentwithand to some extentmotivatedby approx-

imation (61),and which accords with the numerical resultsof

Section3.6 below, which are furthersupportedby the N-body

simulationsinSection4.1.The numericalresultsindicatethat,at

leastinthecaseof initiallypower-law power spectra,the quadru-

pole-to-monopoleratio_/_0 appearsto satisfya simple scaling

/aw with_',such thattheshape of theratioisinsensitiveto_,while

itsamplitudeisproportionalto the usuallinearratio(strictly,the

numericalresultsareforsmoothed power spectra,but we assume

thattheresultshold alsowithoutsmoothing).We furtherfindthat

the zero-crossingof the quadrupole scales with B such that

D 2 - ll(1+ B). These empiricalresults,combined with equation

C)1996 II.AS, MNRAS 2112,767-778
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(63), suggest the general approximation

1_2(k) _B+_[3: ¢)lnP[k,(1 +B)t/2"D]

P'o(k)" I + _/_ + _B: ¢1In(D:) (64)

The approximation (64) relates the quadrupole-to-monopole ratio

P'.,IP6 of the redshifted power spectrum to the evolution

In P/d In D" of the unredshifted power spectrum in the Zel'dovich

approximation. Although we have numerical support for the

approximation (64) only in the case of initially power-law spectra,

we suggest that it is likely to be a good approximation for arbitrary
power spectra.

3.5 The generating function of smoothed power spectrum
multipoles

So far we have obtained a number of analytic results for the redshifi

power spectrum in the Zel'dovich approximation, but in general it is

necessary, to resort to numerics. Unfortunately, numerical integra-

tion of the redshift power spectrum, equation (53), while feasible, is

unpleasant (see Appendix A). One way to sidestep the numerical

difficulties is to smooth the power spectrum. This is not such a bad

idea because it is necessary to measure a smoothed power spectrum
from observations. That is, the Fourier modes measured in a

catalogue are already convolved with the window function of the

catalogue, and one may choose to smooth the power spectrum

further to reduce error bars. in addition, smoothing makes defining
quantities such as the zero-crossing of the quadrupole, discussed in
Section 3.6, more robust to random errors.

The smoothed (unredshifted) power spectrum is defined as

P(k)
= J d._,e(k)W_ (,,:,). (65)

We choose to adopt a power law times Gaussian smoothing kernel

;_,),.(k._:)= kz,,"exp(-k"-/,_2)
2"_:_'+31r'[(2N+ 3)/2] (66)

which isanalyticallyconvenient,and goestoa deltafunctioninthe

limitN -- _c Insubsequentsectionswe useN = 1.

For theredshiftpower spectrum,thesmoothed harmonics can be

definedsimilarlyby

Pt(k)= (26 + l)_d3kP'(k)1;'¢_k)We.(k._). (67)

The ratio P0(/c)//_(k) of smoothed quadrupole and monopole

harmonics satisfies the usual equation (60) in the linear limit.

The whole hierarchy of smoothed spectra, for various N and £',
can be derived from the generating function

G(a, b). I d'ak/_(k)e-"_:-_:_'_ (68)

in terms of thisgeneratingfunction,themonopole harmonic of

theredshiftpower spectrum,smoothed withthewindow W,v,is

_(/') = L-_J,,..a-:t2.,r_z"+srlfw + 3)/2_j1 (69)

while the quadrupole redshifted power smoothed with the same
window is

_., fie)=

5 r a_. oi r al_-'f G(a b)
abJ_[ aaJ,.i.:12_&z,+,Fl(2N+ 3)/2]}' (70)2
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Figure 2. Plots of the ratioR of smoothed quadrupole and monopole pov.'ers
against d_7/:",))"':'for initially po,,_.er-law spectra v, ith indices, from lower

curve to upper, ofn = - 1, - 1.5. -".-2.5 and -2.9. In each case curves for

,8 = 0 and 1 are shown. _.hich lie close to each other (and practically on top

of each other for n = - 1 and - 1.5) when R is scaled to the linear amplitude

R t and the zero-crossing scale ]q,. For each value of the spectral index./3 _ 0

gi,.es the slightly higher scaled ratio.

Substituting equation (51) for the redshifl power spectrum into the

generating function (68) gives

G(a.b) = [ d'_qd_ke''t'q-''t,'l'''''1', (71)

where 9,j is the matrix

• ,:(q) = ab,j + b:,,_, + ¢_:(0) - g,,+j(q). (72)

The k-part of the integral (71) is the Fourier transform of a

Gaussian, which solves in the usual way to give

[ rr3t:-d3q e_q:)g,_
G(a.b) = j_ , (73)

where I_J is the determinant of q',:,

I_1 = (¢+ + a){(¢+ + if_ + a)[G.(1 + t_)" + a + b]

+_:¢_[a(2/3 + B:) - b]} (74)

with la = _.._' and ff,(q) given by equations (21) and (22), and

_I',_t = _,',l'ffJ_j is the qq-componenl of the inverse of ',I'O.

(¢,+ + at, r
%' = l---iTV--i_++,,

+(I - t2)[C,+f2B+ )8")+ b +/_:_,_B:]) • (75)

Evaluationofthesmoothed monopole and quadrupolespectrafrom

equations(69).(70)and (73)stillinvolvesa double integralover/a

and q. However, the integrandhereis well-behaved(atleastfor

smallN. such asN = I)and depends onlyon elementaryfunctions

[besides¢',dq)].Thiscompares withthe unsmoothed case(Appen-

dix At. where the integrandis ill-behaved,and evaluatingthe

harmonicsinvolvesadouble integralover an infinitesum involving

specialfunctions.

3.6 Numerical results for quadrupole and monopole power

From the generating function of muhipole moments, equation (73),
we have calculated numerically the smoothed quadrupole and

monopole moments of the power spectrum for initially po,aer-law

spectra PL = k" with various values of the index n. and for various 6'.

The smoothing kernel is W_. equation (66), with N = 1. Fig. 2 shows

the ratio R of the smoothed quadrupole and monopole powers

R-_(_ ) (76)

p;(&-)

for a representative sample of cases, n = - I. - 1.5, -2, -2.5 and

-2.9, and for /3-= 0 and 1 in each case. Values intermediate

betv,+een these give cu_es intermediate to those plotted. The plotted

ratio has been divided by the linear ratio,

RL = (_8+_t3')/(1 +iB+_fl"), equation (60), and the wave-

number has been scaled to the zero-crossing scale. ,_0.

It is immediately apparent from Fig. 2 that the shape of the

quadrupole-to-monopole ratio R depends on the spectral index n.

but is insensitive to /3 at fixed n. at least for n :>-2.5. The

insensitivity to/3 is an interesting result, and we have previously

invoked this insensitivity in proposing the approximation (64) to the

(unsmoothed) ratio. As to the spectral index. Fig. 2 shows that, for

n < -2, the ratio R acluallv rises up above its linear value before

turning over and going through zero. Physically. the linear squash-

ing effect is first enhanced by caustics in redshift space as structures

approach turnaround, and is then subsequently negated by 'fingers-

of-God" as structures collapse. Fig. 2 indicates that for n <-- -2 the

caustic effect wins over the finger-of-God effect at translinear

scales. Ho_vever. as the enhancement peak scales as

,,(-p_,- 0.2v'"-_'/_,,, we find that R decreases for n _< -2. for fixed

t3, in the regime & - ,t 0,

A useful fitting function to the curves in Fig. 2 is

R = RLe ..... i,:z[] - (_l_u)o_,,+3)] . (77)

which is accurate to within 10 per cent over the range

0.1 < '('//_'u< 1. and -3 < n < -1. We shall use the fitting function

(77) in fitting the obser',, ed ratio R measured in the QDOT plus 1.2-

Jy sur,,ey to _3and n, in Section 4.2.

The zero-crossing scale of the quadrupole power also contains

useful information about _ and the spectral index. The zero-cross-

ing scale discussed belo'+, refers strictly to that of the smoothed

quadrupole power, but the zero-crossing scale of the unsmoothed

quadrupole is not greatly different.

Suppose that the zero-crossing of the smoothed quadrupole

power /5,_(_:) is obse_ed to occur at wavevector 1,o. Define a

corresponding real scale by g/o "aft:o, where o_ is a fitting constant.

discussed belo',_.. Then we find that the dimensionless amplitude of

the displacement correl::tion function at the zero-crossing scale qu

is fitted tolerably v,ell by the following fitting formula:

¢.(:/,) C
?/,)= c_/J_o. (78)

l+a "

In the Zel'dovich approximation, formula (78) with the values (we

adopt here the value of cf that best fits the N-body simulations

reported in Section 4.1, since the same value works _ell also for
Zel'dovich)

a=2.3. C=0.19 (79)

is accura,e to better than 20 per cent for initially po_.-er-law spectra

over the observationally interesting range of spectral indexes

-2 <n <-I and linear growth rate parameter 0< _3s 1. As a

matter of interest, in the case n = - 1 the exact analytic result (in

the Zel'dovich approximation) is ¢, t?/,)l///,] = l/[o?(1 + fl)]. Phy-

sically, it is not too surprising that the zero-crossing of the quadru-

pole should occur ,,,,'hen the rms displacement ff_-'(q) between pairs

has reached an appreciable fraction of their scparation q.

_, 1.996 RAS..MNRAS 282.7f)7-77S
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The amplitude of the power spectrum itself at lhe zero-crossing

X'ois a more complicated function of spectral index. During linear

evolution, the dimensionless smoothed monopole redshifted power

_(I,') is related to the dimensionless displacement correlation

function _..(,:/)I_: at _/= al]_ by (compare equation 32: note that

the factor ]_[85+n)/2]/I'(512) below comes from smoothing)

._-'<,_)= l+ fl+_B: _.(2-n)sin[(-n-l)'r,/2lrtl-n)

r'[(5 +n)12] ot_+,, _,+ (cd,[')x " -: • (80)
Ft5/2) (e, lk) 2

Non-linear evolution, which is starting to become important at zero-

crossing. ',,,.ill modify the power from the linearly evolved value

(80). Setting aside this effect of non-linearity, one concludes from

equation (80). combined with the approximation (78). that the

amplitude of the monopole power at zero-crossing is sensitive to

the spectral index n. but relatively insensitive to fl [the 1/( l + fl,1

factor in equation (78) tending to cancel the 1 + ._/3 + _ 2" factor in

equation (80)].

It is worth emphasizing this interesting if somewhat disappoint-

ing result: one might ha"'e hoped that the amplitude of the obser,'ed

monopole power at the zero-crossing of the quadrupole would

provide a measure of/3 in the mildly non-linear regime, offering a

check on the value oL3 measured from the quadrupole-to-monopole

ratio in the linear regime, and perhaps a test of the bias b. However,

the hope is not realized: the po``ver at zero-crossing is sensiti``'e

mainly to the spectral index, not to/3.

4 COMPARISON V¢ITH SIMULATIONS AND
OBSERVATIONS

4.1 Comparison with simulations

Given the approximate nature of the Zel'dovich mapping assumed

in Sections 2 and 3. it is important to check the accuracy of these

results with N-body simulations, where non-linear effects can be

accounted for on smaller scales. The simulations that v,e ran used

the AP';M code of Couchman (1991). generalized to low P, by

Peacock & Dodds (19947. on a 643 grid with 643 particles.

We ran simulations with power-law initial spectra with indices

n = - 1, - 1.5 and -2. both for _ ----1. and for a low-re spatially flat

model with ft. = 0.3 and a vacuum-energy contribution of ft.._ =0.7,

corresponding to /3 = 0.5. In each case three simulations were

computed with differing random Gaussian initial conditions, 18

simulations altogether. We assumed no bias in the density field, and

evolved all the models for 300 time-steps so as to erase the effects

of using the Zel'do'ieh approximation in the initial setting up of
the simulation.

Power multipoles were calculated by assigning densities to the

grid by the cloud-in-cell algorithm and fast Fourier transforming the

cube. The shot-noise component of the power 'vas subtracted and

the resulting Fourier space compressed by averaging o"'er

azimuthal angles. The multipoles _'ere then calculated by a least-

squares fit to each mode:

The weighting scheme used ,,,,as the inverse variance.

w+(k) = 11o21k. g,I. calculated from the intrinsic cosmic variance.

e(k) = \_:!kt. for each mode. The resulting power muhipoles

were then smoothed using the kernel function lily with A' = l,

equation (66). and an inverse variance weighting scheme.

O 1996 RAS, MNK-_S 282. 767-778

Non-linear power spectra 775

c5

o

to

_0°

' ' ' ' I

:I

• •Oo...... , ; ".N
0.2 0.5 1 2

£7£'0

Figure 3. Plots of the ratio R of smoothed monopole and quadrupole pov,'ers
scaled b.v the zero-crossing, k0. From top to bottom or. scales k < k0 are

plotted the numerical results for the Zel'dovich evolution for each power

spectrum (solid lines), forfl = ] withn = -1.-1.5 and -2 (top three lines)
and B = 0.5 with n -- -1. -1.5 and -2 (bottom three lines). Overlaid are

the results from a set of N-body simulations with the same initial parameters
(points). Errors on the simulations are from cosmic variance.

Generally, ',,'e found that the Zel'dovich approximation ceased to

provide a good approximation to the evolution of monopole or

quadrupole power at moderately non-linear epochs. This is to be

expected, since, as discussed in Section 2.3, the expansion of

structures follo"'ing collapse which occurs in the Zel'dovich

approximation causes power to reach a maximum and then decline,

whereas in reality power continues to increase monotonically.

Hov, ever. as shown in Fig. 3, the Zel'do"'ich approximation does

appear to reproduce remarkably ,,,,ell the amplitude and shape of the

ratio R of the quadrupole and monopole powers seen in the N-body

simulations, for scales down to the zero-crossing of the quadrupole,

/:"s L,. Small deviations occur at small k, but these can be attributed

to the lack of contribution from smaller wavenumbers in the

smoothing process of the simulations. Small deviations are also

seen in the n = -2 spectra, at least some of which may arise from

cosmic variance and the influence of the finite box size on the longest

wavelengths in the simulations. However. the change in shape of the

quadrupole-to-monopole ratio with spectral index predicted by the

Zel'dovich approximation is clearly seen in the simulations. All the

models fail in the regime ,_-> k0, where we expect virialized clusters

to provide the strongest redshift distortions (Jackson 1972).

The scaling relation suggested by equation (78) for the amplitude

of the displacement covariance at the zero-crossing of the quadru-

pole is also found to hold for the simulations. Hov,'ever. the

amplitude C predicted by the Zel'dovich approximation ',,as not

so accurate. Applying a least-squares fit of the model to the

ensemble of 18 simulations, we found

a = 2.3-,- 0.4, C = 0.54.,- 0.07 ($2)

with a formal X: = 15.6 for 16 degrees of freedom. In general,

while the form of the scaling relation (78) holds, the Zel'dovich

approximation underestimates the v,'avenumber at zero-crossing of

the quadrupole by a factor of approximately 2 in the cases

considered. This can be understood as arising from the outflow

of particles which follows caustic formation in the Zel'dovich
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Figure 4. Plot of the ratio R of smoo:hed monopole and quadrupole powers
as a function of ,,,.a,,enumber k for the merged QDOT plus 1.2-J._ redshift

su_ey. The solid line is a fit to a model ,,'.ilh/3 = 0.S and J+= -2.5. and _ ith

= 0.ShMpc -j.

approximation. This outflow exaggerales the "finger-of-God' effect,

causing the zero-crossing of the quadrupole to appear at larger scales

in the Zel'dovich approximation than is actually the case.

In fitting to observed data in the next section, we use the N-body

simulations to calibrate the zero-crossing of the quadrupole.

4.2 Application to the QDOT plus 1.2-Jy redshift survey

We have applied the results obtained above to estimate the distor-

tion parameter. 13.and the local primordial spectral index. ,. from

the amplitude and shape of the ratio R of smoothed quadrupole and

monopole powers observed in the merged QDOT plus 1.2-Jy IRAS

redshift survey. We further infer the variance 03 of counts in

8 h-tMpc spheres from the observed scale of the zero-crossing of

the quadrupole. The observed quadrupole-to-monopole ratio, taken

from Hamilton (1995). is shown in Fig. 4. Superimposed on the

observations is a model with _ = 0.8 and , = -2.5. The zero-

crossing is estimated to be at i,'n = 0.5 ",-0.1 h Mpc -t .

We use the fitting function (77) to fit the amplitude, which

depends on _. and the shape, which depends on ,. of the observed

quadrupole-to-monopole ratio R. We construct a likelihood

function

£ = exp (-a,M,ja.,) (83)

where ai = (data - model) is the difference bet_een the ith data

point and the model prediction, M,j is the data covariance matrix

whose diagonal terms comprise the uncertainty on each data point

and whose off-diagonal terms are estimated assuming that the

underlying data have independent Gaussian-distributed errors,.

and the major source of correlations comes from smoothing. As

our model breaks down on scales smaller than the zero-crossing

point, and the errors on the observed quadrupole diverge at low

wavenumber, we restrict our analysis to wavemodes in the range

0.06 < ]d(hMpc -t ) < 0.5.

Fig. 5 shows the marginalized likelihood in the (n. _) plane. As

n _ -3, d is forced to infinity by our fitting function. The like-

lihood function selects this range as the better fit to the data, owing

to the slight inflection in the quadrupolc-to-monopole ratio around

' i' ' 1 .... I .... I ....

n

Figure 5. Likelih,.x.,dfunction £ f_. nldata), of_ and the local spectral index. ,.

from the quadrupole-to-monopote ratio of the merged QDOT plus 12-Jy
red_.hift su_e._. Conlours are spaced b._ _ In/" = --015 with the inner contour

delineating the 6S per cent and outer contour the 95 per cent confidence

region. While the spectral index is not strongl,, constrained. _' < 0.5 is ruled out
at the 95 per cent level. This rules out f/< 0.3 if IR.A5 galaxies are unbiased.

/,- = 0.2hMpc -_. Hov.ever. if we consider only the 95 per cent

confidence limit given by the outer contour, low values of 13< 0.5

are strongl> excluded. In terms of the galaxy bias parameter, this

implies that the density parameter fl > 0.3b :r'. The ,_alue of the

primordial spectral index on these scales is not strongly con-
strained, but is consistent with ,- -2.

We estimate the clustering amplitude a s from the scale of the

zero-crossing of the quadrupole, using equation (78) with the

parameters (82) calibrated from the N-body simulations. In Fig 6

we plot the marginalized likelihood function f'(ot,)= J'd3d,'s

/"(_. n. osldata). We deduce that as = 0.7 .,-0.05 where we quote

95 per cent errors. This is in very good agreement ,,_ith _,alues found

by other methods for the IRAS galaxy catalogues (e.g.. Fisher et al.

1994: Heavens & Taylor 1995) if 1P_4S galaxies are unbiased.

I I I ' I '

o"8

-t |
Figure6. M',trginalizedlikelihoodfunclion£(o_)ofthevarianceinSh b,pc

spheres inferred from the zero-erasing of the QDO"I"plu', 1.2-.1'.quadrupole.
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Given the indirect method of our measurement, we find this very

encouraging.

5 SUMMARY

The main aim of this paper has been to study the redshift distortion

of the power spectrum in the moderately non-linear regime. Our

approach is motivated by the consideration that structures may

appear in redshifl space to be more non-linear than they really are -
for example, regions that are just turning around in real space

appear as caustics in redshift space. This leads us first to work in

Lagrangian space, and secondly to use the Zel'dovich approxima-
tion. which is in effect linear theory expressed in Lagrangian space.

We started by deriving an expression relating the power spectrum

to the Lagrangian displacement field. We used this to determine the

evolution of the po,.ver spectrum in the Zel'dovich approximation,

first in real space, then in redshifi space in the plane-parallel

approximation. We presented some analytic solutions for initially

pov,er-law spectra. In particular, we showed that a spectrum v,'ith

index n = -1 gives rise to an incoherent Gaussian displacement

field, producing non-linear redshift distortions with the same form
as the Kaiser-Peacock model.

We derived various analytic and numerical results for the

observationaIly interesting ratio R of quadrupole and ntonopole

redshift powers, whose value in the linear regime,

RL = (_/3 ÷ ! _: I/(1 -+-_ B + ._,_:): ,,ields a measure of the distor-

tion parameter `8. In the Ze]'dovich approximation, the amplitude of
the ratio R is set by the linear value R L. but the shape of R as a

function of wavenumber k depends mainl.,, on the spectral index n,

and is insensitive to/3 at fixed n. The zero-crossing of the quadru-

pole power occurs at the point where the Zel'dovich power

spectrum is a maximum as a function of time.
We have tested the Zel'dovich results against N-body simula-

tions with initiall} pov,er-law spectra, in both P. = l and low-P.
models. The simulations show that the Zel'dovich approximation

ceases to provide a good approximation to the power spectrum at

moderately non-linear epochs. Remarkably. however, the Zel'do-

rich approximation predicts rather w+ell the amplitude and shape of

the quadrupole-to-monopole ratio R on scales down 1o the zero-
crossing of the quadrupole. _.,.+henR is scaled to the scale of the zero-

crossing. The Zel'dovich approximation underestimates the wave-

number at zero-crossing by a factor of about 2. although it predicts

correctly the way in v.'hich the zero-crossing scales with _3and n.

We have applied these findings to estimate the distortion para-
meter B, the local spectral index n. and the variance a_ of counts in

8 h-tMpc spheres, from the quadrupole-to-monopole ratio R mea-

sured in the merged QDOT plus ! .2-Jy redshift survey. We find that

the distortion parameter is constrained to ,8 > 0.5 at the 95 per cent

level. The spectral index is not ,_ell constrained, but is consistent
with n-,-2 at translinear scales. The clustering amplitude o_,

inferred from the scale of the zero-crossing of R, is

os = 0.7 ± 0.05, consistent with other estimates.

The success of the Zel'dovich model in describing the quadru-

pole-to-monopolc ratio R suggests that departures from the linear

value R L at translinear scales are caused mainly by infall on to

clusters, not by virialized cluster cores.
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APPENDIX A

This section sho,,vs how to evaluate the "difficult' integral (53) for

the redshift po,,ver spectrum in the Zel'dovich approximation. The

integral is a tv,'o-dimensional integral over _ = K.//and separation

q. ',,ve choose to develop the integral over ,tt analytically as an

infinite sum. both because the numerical integral over /.i. is itself

unpleasant, and because the expression as an infinite sum allows the

q-integrand to be continued anal} tically into the complex q-plane,

which stabilizes the integration oxer q.

For small kqs, the Bessel function Ju(kqs_,_T_-) in the

integrand can be expanded as a pov,er series in 1 - _'. Integration

of the leading term (which is 1) in the series leads to an expression

similar to (25), and higher terms in 1 -,u" can be generated by
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repeated differentiation of this expression. The result is the infinite

sum

P'(k) = ReI_ 2=q-'dq e -x:l¢-_'_-j

x -_ F(kqc, B), (A1)
.-0 _1!2 \°°/B=Kz_-

where F is the function defined by equation (26), and s and c are
given by equations (54) and (55). The sum in equation (AI) can be

truncated to a few terms if kqs is small. For large k (non-linear

limit), this truncation e.ffectively works for all q, since then the

exponential factor e -x'";-+¢-j causes the integrand to become

negligible when kqs is not small.

The expansion (A1) fails when kqs is large and at the same time

K2(4,÷ + _¢_ ) is small. Here a series expansion in K:ff_ leads to the

following infinite sum:

P'(k) = Re 4=qZdqe -x'_"

×_-._¢KZ__)" ( O'_ z" ei:A:-"_q":l ::
.=0 .

Expression (.42) works when K"__ is small and kqs is not small,

which is complementary to the domain of validity of equation (A1).

A program such as _,¢n-tE._tA'rJc^ helps considerably with the

algebra invol',ed in taking the repeated derivatives in both equa-

tions (AI) and (A2).

The integration of equalions (A l) and (A2) over q must be done

numerically. As in the unredshifted case, the oscillator)' character

of the integrand for large kq can be converted into exponential

decay by shifting the path of integration ofq into the upper complex

plane. One should be careful here that, although the real parts of the

integrands of equations (A1) and (A2) agree for real q, their

imaginary parts differ, so that their analytic continuations in the

complex q-plane differ. The integrands could be made identical by

adding their complex conjugate expressions, but this would intro-

duce an undesirable exponentially increasing component in the

upper complex plane. Therefore, if it is necessary to use both

expressions (A1) and (A2) in integrating from q = 0 to z. then the

transition from one expression to the other along the path of

integration must occur on the real line.

In the cases that we tried, an integration path similar to that

described at the end of Section 2.2 proved satisfactory. Namely.

integrate first some way along the real axis. then complete the

integration along a straight line upwardly slanted in the complex

plane. In the case K'-'__(q = 1�ks) z 1. equation (A1) works every-

where on the path of integration, in the case KZ(J_(q = 1�ks) < 1,

equation (A1) _orks for the first part of the integration, along the

real line, but equation (A.2) is required for the second part, a suitable

path being verticall_ upwards in the complex plane.

Computing the quadrupole and monopole harmonics of the

redshift power spectrum requires a final numerical integration of

P'(k) over uJ, with P_ (u_t-) for £ = 0 and 2, equation (59).
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